Title of Dissertation: ULTRA-FAST OPTICAL SIGNAL PROCESSING FOR DIGITAL COMMUNICATIONS USING ALL-OPTICAL NONLINEAR INTERACTIONS IN SEMICONDUCTOR OPTICAL WAVEGUIDES

نویسنده

  • Ehab S. Awad
چکیده

Title of Dissertation: ULTRA-FAST OPTICAL SIGNAL PROCESSING FOR DIGITAL COMMUNICATIONS USING ALL-OPTICAL NONLINEAR INTERACTIONS IN SEMICONDUCTOR OPTICAL WAVEGUIDES Ehab S. Awad, Doctor of Philosophy, 2003 Dissertation directed by: Professor Julius Goldhar Department of Electrical and Computer Engineering In optical communications, clock recovery, optical time demultiplexing, and 3R regeneration are known as optical signal processing. Ultra-fast optical signal processing techniques are mandatory in future high-speed network and transmission systems to allow effective use of the large optical fiber bandwidth and the light speed capabilities. One solution is all-optical signal processing that avoids the bottleneck of slow electronics. All-optical modulation can be achieved through nonlinearties in semiconductor waveguides like EAM or SOA. Those waveguides have fast and strong nonlinearties that are appropriate for ultra-fast processing. In addition, semiconductors require reasonable optical power to operate and they can be integrated with other semiconductor devices. In this work, we demonstrated a several new techniques for optical signal processing, such as ultrafast optical clock recovery. We use the fast and nonlinear timedependent loss/gain saturation in EAM/SOA to perform all-optical timing extraction. This in turn is used for optical clock recovery from data rates up to 160 Gbit/s. Simulation results shows that the technique has a potential to recover optical clock up to 640 Gbit/s. Also we demonstrated all-optical logic AND gate using nonlinear transmission of EAM. The gate shows successful operation at 10 Gbit/s with a 2 -1 PRBS data and it has potential for higher speeds. We also demonstrated optical time division demultiplexing from 40 Gbit/s with simultaneous clock recovery using cross-absorption saturation inside a single EAM. The system shows an error free operation using a 2-1 PRBS. Also, it shows successful operation with burst-mode data propagating in a fiber-optic recirculating loop up to a distance of 10,000 Km. The optical 3R regeneration is also demonstrated at 10 Gbit/s using a single EAM. The all-optical timing extraction inside EAM is used for retiming, while the nonlinear transmission of EAM is used for reshaping. Meanwhile, wavelength conversion and re-amplification are performed at the same time. FWM is well known by its ultrafast operation and has been widely investigated by other groups in SOA’s and optical fibers. Here, we showed that FWM in EAM has unique characteristics, like wide detuning range and enhancement of conversion efficiency with reverse bias. Also, we demonstrated FWM demultiplexing from 80 Gbit/s with simultaneous clock recovery using co-propagation inside a single EAM. ULTRA-FAST OPTICAL SIGNAL PROCESSING FOR DIGITAL COMMUNICATIONS USING ALL-OPTICAL NONLINEAR INTERACTIONS IN SEMICONDUCTOR OPTICAL

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of dissertation : SEMICONDUCTOR WAVEGUIDES FOR NONLINEAR OPTICAL SIGNAL PROCESSING

Title of dissertation: SEMICONDUCTOR WAVEGUIDES FOR NONLINEAR OPTICAL SIGNAL PROCESSING Paveen Apiratikul, Doctor of Philosophy, 2009 Dissertation directed by: Professor Thomas E. Murphy Department of Electrical and Computer Engineering This thesis investigates nonlinear effects in semiconductor waveguides for optical signal processing. Two semiconductor waveguides are studied : nanoporous sili...

متن کامل

Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal

This paper deals with the design and simulation of all-optical 4×2 encoderusing the wave interference effect in photonic crystals. By producing 4 opticalwaveguides as input and two waveguides as output, the given structure was designed.The size of the designed structure is 133.9 μm2. The given all-optical encoder has acontrast ratio of 13.2 dB, the response time of 0.45 ...

متن کامل

Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings

Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...

متن کامل

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

متن کامل

Unified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter

In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003